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ABSTRACT 
 

This study has been inspired by the paper "An efficient 3D topology optimization code 

written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based 

three-dimensional (3D) topology optimization of continuum structures can be implemented 

in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and 

easy-to-understand modifications we get a few lines longer code, which is able to solve 

robust topology optimization problems with uncertain load directions. In the presented worst 

load direction oriented approach, the varying load directions are handled by quadratic 

constrains, which describe spherical regions about the nominal loads. The result of the 

optimization is a robust compliance-minimal volume constrained design, which is invariant 

to the investigated directional uncertainty. The key element of the robustification is a worst-

load-direction searching process, which is formulated as a small quadratic programming 

problem with quadratic constraints. The presented approach is a 3D extension of the robust 

approach originally developed by Csébfalvi (2014) for 2D continuum structures. In order to 

demonstrate the viability and efficiency of the extension, we present the model and 

algorithm with detailed benchmark results for robust topology optimization of 3D 

continuum structures. It will be demonstrated that the computational cost of the 

robustification is comparable with its deterministic equivalent because its central element is 

a standard 3D deterministic multi-load structure optimization problem and the worst-load-

direction searching process is formulated as a significantly smaller quadratically constrained 

quadratic programming problem, which can be solved efficiently by several different ways. 
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1. INTRODUCTION 
 

In the real-world topology optimization problems, the optimal performance obtained using 

conventional deterministic methods can be dramatically degraded in the presence of sources 

of uncertainty. The source of uncertainty may be the variability of applied loads, spatial 

positions of nodes, material properties, and so on. Various probabilistic approaches have 

been developed to account for different types of uncertainty in structural design and 

optimization methods (see, for example, Choi et al. [3], however, the paradigm had not been 

applied to structural topology optimization methods until recently. The interested reader is 

directed to Bendsøe and Sigmund [4], which contains an extensive bibliography on this 

subject. 

At present there are two main approaches that consider uncertainties in structural topology 

optimization. The first is to introduce a number of reliability constraints based on probability of 

failure, often referred to as reliability-based topology optimization (RBTO) (see, for example, 

Kharmanda [5]. These methods often aim to minimize the weight or volume of a structure, 

while ensuring the probability of failure is less than a prescribed value. The failure probability 

constraint is a function of the uncertain parameters and is usually recast to ensure the reliability 

of the structure is greater than a required value. When a failure state is not defined, an 

alternative approach to RBTO is to consider a probabilistic objective that is a function of the 

uncertain parameters. This approach is often referred to as robust optimization. Popular choices 

for robust objective functions are to minimize the expected or maximum performance and both 

approaches have been used when solving the classic minimization of compliance problem with 

uncertain variables (see Califoire et al. [6] and de Gournay et al. [7]). Various parameters can 

affect the robustness and reliability of a structure, including loading, geometry and material 

properties. Loading uncertainties are most widely studied, although the level of uncertainty is 

often limited to loading magnitude. However, uncertainty in loading direction can be simulated 

by considering orthogonal uncertain loads with zero mean (Mogami et al. [8]). This approach 

may be appropriate for some problems, however, the orthogonal loads are often uncorrelated 

and the relevance to the directional uncertainty of a single load can be unclear. For non-

probabilistic uncertainties, loading direction has been considered using the multi-ellipsoid 

convex model (Kang and Luo [9]), which does allow for some interaction between orthogonal 

loads. For the robust optimization approach, methods for approximating probabilistic 

directional uncertainties include using a discrete probability function (Conti et al. [10]), 

discretization of a continuous probability function using a sampling method (Calafiore et al. 

[11] and Evgrafov et al. [12]) and an approximation by a quadrature technique (Chen et al. 

[13]). These discretized approaches transform the optimization problem into a multiple load 

case one, which can be solved for the minimization of expected performance problem. Recently 

Dunning et al. [14] proposed an efficient method for considering loading magnitude and 

directional uncertainty in topology optimization in order to produce robust solutions. The 

classic minimization of compliance problem is considered with uncertainties being introduced 

into the objective function and described by continuous normal probability functions. In another 

paper, Dunning et al. [15] presented a new model for simultaneous minimization of expectancy 

and variance of compliance in the presence of uncertainties in loading magnitude using exact 

formulations and analytically derived sensitivities. Recently, Liu and Tovar [16] demonstrated 

that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be 
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easily implemented in 169 lines of MATLAB code, which is an extension of the 88 line long 

MATLAB code developed by Andreassen et al. [17] for 2D topology optimization. 

A new worst-load-direction oriented approach for robust topology optimization with 

uncertain-but-bounded load directions was introduced by Csébfalvi [18]. 2D benchmark results 

for the proposed approach were presented by Csébfalvi [19]. This study has been inspired by 

the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu 

and Tovar [16] demonstrating that SIMP-based three-dimensional (3D) topology optimization 

of continuum structures can be easily implemented in 169 lines of MATLAB code. Based on 

the above paper, we show here that, by simple and easy-to-understand modifications we get a 

few lines longer MATLAB code from the original 169 line MATLAB code, which is able to 

solve 3D robust topology optimization problems with uncertain load directions. 

The paper is organized as follows. The model of robust topology optimization of 3D 

continuum structures is presented in Section 2, where we show that the result is a compliance-

minimal design for a given volume constraint, which is invariant to the directional uncertainty. 

The central element of the robust solution searching process is a standard deterministic multi-

load optimization model developed for solid isotropic material. The worst-load-direction 

searching model is formulated as a small quadratic programming problem with quadratic and 

box constraints. In Section 3, we describe the algorithm of the robust 3D topology optimization 

model. In Section 4, detailed and well-illustrated benchmark results will be shown to 

demonstrate the vitality and efficiency of the robust topology optimization of 3D continuum 

structures. Finally, some concluding remarks are presented in Section 5. 

 

 

2. MODEL 
 

The mathematical formulation of the deterministic 3D topology optimization of continuum 

structures can be formulated as follows: 

 

  minKUUx  c   (1) 

  0V V x  (2) 

FKU   (3) 

10  x  (4) 

 

where c  is the compliance, U  and F  are the global displacement and force vectors, 

respectively, K  is the global stiffness matrix, x  is the vector of design variables (the element 

densities),  xV  and 0V  are the material volume and design domain volume, respectively, and 

  is the prescribed volume fraction. The design domain is assumed to rectangular and 

discretized with eight-noded cubic elements with three degrees of freedoms (DOFs) per node. 

The nodes identified with a number ordered column-wise up-to-bottom, left-to-right, and 

back-to-front. The position of each node is defined with respect to Cartesian coordinate system 

with origin at the left-bottom-back corner. The optimization problem (1) can be solved by, for 

example, the well-known optimality criteria method, but there are several other possibilities to 

manage the problem (see, for example, Liu and Tovar [16]). 
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It is very easy to extend the algorithm to account for multiple load cases (see, for example, 

Andreassen et al. [17]). In fact, this can be done by adding only a few additional lines and 

making minor changes to another few lines. In the case of m  load cases, the force and 

displacement vectors can be defined as m column vectors and the objective function will be the 

sum of m  compliances: 

 

  minKUUx  c
m

i

ii 
1

 (5) 

 
0V V x  (6) 

ii FKU  ,  m     i ,,, 21  (7) 

10  x  (8) 

 

Now, we will show that the multi-load compliance-minimization model, after simple 

modifications can be used to solve our directional uncertainty problem (see Csébfalvi [3]). 

Let  FF  , where  0 , denotes a load vector with uncertain load directions, 

which form a spherical region around the nominal load direction. In Fig. 1, the nominal load 

direction is represented by a solid arrow, which may be perturbed by maximum 
30  in 

any direction. 

 

 
Figure 1. A spherical region around the nominal load 

 

First, we rewrite the deterministic single load optimization model according to the uncertain 

load directions. The theoretical formulation of the modified optimization problem can be 

described as follows: 

 

  minKUUx  c   (9) 

  0V V x  (10) 

 FKU   (11) 

 0  (12) 
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1x0   (13) 

 

According to the modification, the goal is to minimize the compliance of the structure for 

all the feasible loads  F , where  0 . It is worth noting that after inserting the 

 0  relation we get a mathematical program with infinite number of constraints since 

set   is in general a set of continuous sets with uncountable infinite number of elements.  

The result of the optimization will be a robust compliance-minimal design for the 

prescribed  volume fraction, which is invariant to the investigated load uncertainty type. 

As we are only interested in linear elastic structures, the stiffness matrix K and its inverse 
1

K  are symmetrical. 

Let us denote by p  the number of the external point loads with directional 

uncertainty. Here we assume that all uncertain variables i ,  p    i ,,, 21  are statistically 

independent. A directionally uncertain 3D point load with magnitude if ,  p    i ,,, 21  

can be written in terms of three orthogonal loads. For example, when we assume that all the 

loads with directional uncertainty are defined in the z  direction, than they can be described 

by the following three spherical coordinates: 

 

     
     
     

  p    i  

f ff

f ff

f ff

i

iiiii

z

i

iiiii

y

i

iiiii

x

i

i ,,,,,

cossin,

sinsin,

sincos,

f 2120 






















 







 (14) 

 

Naturally, the spherical coordinates can be replaced by their Cartesian equivalents very 

easily to simplify the description of the spherical regions in the worst load direction searching 

quadratically constrained pp 33   quadratic programming problem. 

 

 

3. ALGORITHM 
 

In order to avoid dealing with infinite number of constraints we have to replace the original 

problem with a more tractable equivalent algorithm based on a finite number of constraints. 

The essence of our “minimal-art” algorithm is very simple: 

 
1. First, we redefine the nominal problem, as it would be a multiple load problem with currently 

one load case, therefore we start with 1m  and FF 1 , where F  is the deterministic 

nominal load vector, and set the iteration counter i  to zero. 

2. We solve the current multiple load compliance minimization problem subject to the multiple 

load constraint sets, where the objective function is defined as the sum of the compliances 

and its sensitivity is defined as the weighted sum of the sensitivities with the compliances as 

weights. 

3. Using the stiffness matrix of the previously given best solution we maximize the compliance 

on the set of the feasible load directions. The result will be the worst load vector on the set 
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 0 . If the iteration counter i  is zero then we replace the nominal load vector by the 

worst load vector and its possible counterparts according to the identified structural 

symmetricity, increase the iteration counter by one, and repeat Step 2. Otherwise, we check if 

the stopping criterion is satisfied. If it is true then the algorithm terminates with the best 

robust solution. Otherwise, we increase the iteration counter by one and test the membership 

of the worst load vector in the multiple-load set. If the worst load vector is not a set member 

then we increase m  by one and append the vector to the multiple-load set. If the worst load 

vector has possible counterparts according to the structural symmetricity we repeat the 

increasing and adding process for all counterparts. After that, independently from test result, 

we repeat Step 2. 

In the implementation of the algorithm we have several different ways to manage Step 3 

from an appropriate sampling technique based on a mesh and interpolation to the global 

solution of a large nonlinear optimization problem. We have to note, that, in this context 

“large” means that number of uncertain-but-bounded parameters is large. When the danger 

of “combinatorial explosion” is negligible, then the direct evaluation of the compliance on a 

mesh which is fine enough may be the most safety and most efficient “global” problem 

handling strategy. Theoretically, the worst compliance searching process can be described in 

the following form: 

 

      max FKFx 1 


  c  (15) 

 0  (16) 

 

In this study, we measured the changing of the robustness from iteration to iteration with the 

relative percentage deviation measure ( rpd ), which can be defined in the following forms: 

 

  % 
c

cc
 

i

ii
ii

1

1
1 100







c,crpd  (17) 

 

where  
1ii  cc  and  

1ii c c  mean the compliance region and the maximal compliance of the 

region in iteration  1i i , respectively. Naturally, it is a very interesting open question, that 

what would be the best measure which would be able to characterize appropriately the 

robustness and its change from iteration to iteration, when the volume fraction   is fixed. 

 

 

4. EXAMPLE 
 

The example illustrating the 3D topology optimization of continuum structures shown in Fig. 2, 

is a cantilever beam, where an external unit point load acting in the end-middle-top position of 

the beam upwards, which is denoted by f  and its nominal load direction is 
0 . We 

suppose, that the spherical region around the nominal load, which defines the feasible load 

directional perturbations, is defined by the following relation:
300      . The Young’s 
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modulus is 10 E , the Poisson’s ratio is 0 , and the fixed volume fraction is 250. . 

The penalization power is 3p  and we applied sensitivity filtering with filter radius 

51.min r . In this paper, during the robust topology optimization process, a ground structure of 

cm cm cm 2 481   was used with    %  ii 11 c,crpd  setting. 

 

 
Figure 2. The design domain, boundary conditions, and a single point load with directional 

uncertainty 

 

In this example, our goal is the following: we try to find a compliance-minimal robust 

solution for the fixed volume fraction 20. , which is invariant to the load directional 

uncertainty. The process terminates after the third iteration with    %  26023 .c,crpd  . The 

nominal and optimal robust structure shapes are shown in Figs 3-4. 

 

  
Figure 3. The optimal nominal structure shape Figure 4. The optimal robust structure shape 

 

The plots of the nominal and robust compliances and their common plot on the set of 
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feasible directions (see Figs. 5-7) well demonstrate the effect of the robust optimization. The 

robust optimization process changes the nominal shape and the nominal compliance region 

drastically. It is interesting fact, that the investigated problem is symmetric for the plane, which 

is visualized by the dotted lines in Fig. 2, therefore each robust iteration adds two worst-loads to 

the multi-load problem. The multi-load problem which we have to solve in the first iteration is 

shown in Fig. 8. 

 

  
Figure 5. The nominal compliance region 

 

Figure 6. The optimal robust compliance region 

 

 

 
Figure 7. The common plot of the nominal and 

robust compliance regions 

Figure 8. The multi-load problem of the first 

iteration 

 

We could be note, that the results good demonstrate the fact, that the robust design searching 

process, using the presented simple and easy-to-understand rearrangement strategy, finds a 

really robust solution very quickly for a given volume fraction  . It is a very interesting 

feature of our worst-case-minimizing approach that, according to the constant volume fraction 

20. , the decreasing worst compliance also decreases the compliance range as a useful side 

effect. 
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5. CONCLUSION 
 

This study has been inspired by the paper "An efficient 3D topology optimization code 

written in MATLAB” written by Liu and Tovar [1] demonstrating that SIMP-based three-

dimensional (3D) topology optimization of continuum structures can be easily implemented 

in 169 lines of MATLAB code. Based on the above paper, we shown here that, by simple 

and easy-to-understand modifications we get a few lines longer MATLAB code from the 

original 169 line MATLAB code, which is able to solve robust topology optimization 

problems with uncertain load directions. In the presented worst load direction approach, the 

varying load directions are handled by quadratic constrains, which describe spherical regions 

around the nominal loads. Naturally the applied load direction handling method can be 

replaced by any other uncertainty representation form, which can be described by an 

appropriate combination of linear or quadratic relations. The result of the optimization is a 

robust compliance-minimal design for a given volume constraint which is invariant to the 

investigated loading directional uncertainty. The key element of the proposed robust 

optimization algorithm is a worst-load-direction searching model, which can be formulated 

as a small quadratic programming problem with quadratic constraints and box constraints. 

The presented three-dimensional approach is an extended version of a worst-load-direction-

oriented robust optimization approach originally developed by Csébfalvi [18,19] for 2D 

continuum structures. In order to demonstrate the viability, variability and efficiency of the 

extended robust approach, we presented the extended model and algorithm with detailed and 

well-illustrated benchmark results for robust topology optimization of 3D continuum 

structures. It was be demonstrated that the computational cost of the robustification is 

comparable with its deterministic equivalent because the central element of the proposed 

approach is the standard 3D deterministic multi-load structure optimization problem and the 

worst-load-direction searching algorithm can be formulated as a significantly smaller 

quadratically constrained quadratic programming problem, which can be solved efficiently 

by several different ways. The conception is independent from the applied modelling frame, 

therefore, the presented compliance-oriented “academic” approach could be replaced by a 

weight-oriented “engineering” approach with density and stress constraints, which will be 

shown in a forthcoming paper. 
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